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Problems and Remarks

1. Remark. Dynamical systems generated by two maps
Let δj : I → I, j = 1, 2, be continuous maps of the interval I = [−1, 1] into itself satisfying:

1◦ all δj do not decrease; 2◦ R(δ1) ∩R(δ2) = {0}; 3◦ R(δ1) ∪R(δ2) = I

with R(δj) a range of δj . The semigroup Φδ generated by δ1, δ2 consists of al maps δJ : I → I
of the form δJ = δjn

◦ · · · ◦ δj1 , where J = (j1, . . . , jn) is an arbitrary multi-index with jk = 1
or jk = 2. A sequence (t1, . . . , tn, . . .) of points tk ∈ I is called orbit if for all k = 1, 2, . . . we
have

tk+1 = δjk
(tk), jk ∈ {1, 2}. (∗)

Let T1 and T2 be arbitrary disjoint closed subsets in I and T = T1 ∪ T2. An orbit (t1, t2, . . .)
is called T -guiding if in (∗) jk = 1 as tk ∈ T2 and jk = 2 as tk ∈ T1. This notion plays
a crucial role when studying various forms of the solvability of general linear functional
equations. For example, when describing the kernel of the Cauchy type operator CF :=
F (δ1 + δ2) − F (δ1) − F (δ2) with the above δ1, δ2 the result follows immediately if we note
that the maximal value of any element F ∈ kerC spreads along T -guiding orbits, where
T = T1 ∪ T2 and Tj = {t | δ′j(t) = 0}, see [B. Paneah, Funct. Anal. Appl., 37 (2003), 46–60].
Finally, attractor A in Φδ is a collection of points x ∈ I such that for any point t ∈ I there is
a T -guiding orbit (t, δj1(t), . . .) converging to x. The main problem (solution of which finds
immediately many applications) is as follows: given maps δ1, δ2 and sets T1, T2 to describe all
attractors of the dynamical system Φδ. A particular solution of the problem is given in the
above mentioned paper.

Boris Paneah

2. Remark.

During the 44th International Symposium on Functional Equations held in Louisville in
May, 2006, Janusz Brzd

↪
ek asked on all self-mappings of a given semigroup satisfying the

equation
f(x) + f(y + f(y)) = f(y) + f(x+ f(y)). (1)

Recently, Marcin Balcerowski from Katowice proved some results on (1) as well as on the
more general equation

f(x) + f(y + g(y)) = f(y) + f(x+ g(y)). (2)

Among them the following can be proved.

Theorem

Let G be a group and let g:G → G. Assume that the group 〈g(G)〉 generated by g(G) is G.
Let H be an Abelian group. Then f :G→ H satisfies (2) if and only if it is affine, that is

f(x) = a(x) + b, x ∈ G

with an additive a:G→ H and a b ∈ H.
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Corollaries

1. Let G be an abelian group and let f :G → G. Assume that 〈f(G)〉 = G. Then f is a
solution of (1) if and only if it is affine.
2. A function f : R → R is a continuous solution of (1) if and only if

f(x) = ax+ b, x ∈ R,

with some a, b ∈ R.
3. A function f : C → C is an analytic solution of (1) if and only if

f(z) = az + b, z ∈ C,

with some a, b ∈ C.

Witold Jarczyk

3. Problem.

Let D ⊂ R2 be an open region. Determine the general solution of

k(x + y) = f(x)g(y) + h(y) ((x, y) ∈ D). (1)

More exactly, determine all f :D1 → R, g, h:D2 → R, k:D+ → R satisfying (1), where

D1 := { x | ∃y : (x, y) ∈ D },
D2 := { y | ∃x : (x, y) ∈ D },
D+ := { x+ y | (x, y) ∈ D }.

(2)

BACKGROUND.

I solved equation (1) (Proc. Amer. Math. Soc. 133 (2005), 3227-3233) when k is locally
nonconstant (not constant on neighbourhood of any point in D+; called philandering by
Lundberg, Sablik et al.)

No other assumption. The problem is to eliminate this one assumption.
Why is the equation (1) interesting?

f(x+ y) = f(x)g(y) + h(y) (k = f) (3)

is fundamental to characterising power means among quasiarithmetic means.
For k = h the equation

k(x+ y) = f(x)g(y) + h(y) ((x, y) ∈ D) (1)

i.e.

h(x + y) = f(x)g(y) + h(y) ((x, y) ∈ D) (4)

played an important role in comparison of utility representations (Gilányi-Ng-Aczél, J. Math.
Anal. Appl. 304 (2005), 572–583).

Of course, also the Pexider equations

k(x+ y) = f(x)g(y) ((x, y) ∈ D) (5)

and
k(x + y) = f(x) + h(y) ((x, y) ∈ D) (6)

are particular cases of (1).
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As is known, (6) can be solved by extension, that is there exist F,H,K: R → R satisfying

F = f on D1, H = h on D2, K = k on D+

and

K(u+ v) = F (u) +H(v) for (u, v) ∈ R2.

Surprisingly, for (5) such an extension is in general, not possible (possible only if k is
nowhere zero on D+), as Fulvia Skoff showed by counterexample.

By a constructive method, Baker, Aczél and Skoff found the general solutions of (5).
Similarly, if k is not locally nonconstant, extension would not work in general for (1), another
(constructive?) method would be needed to find the general solution of (1).

János Aczél

4. Remark and Problem. On the stability of the Hermite–Hadamard inequality

The convexity of a continuous real function f : I → R defined on an open interval I ⊆ R

is characterized by both sides of the well-known Hermite–Hadamard inequality, i.e., we have
the following

Fact 1

The following three assertions are equivalent:

(i) f is convex;

(ii)

1

y − x

y
∫

x

f(t)dt ≤
f(x) + f(y)

2
(x, y ∈ I, x < y);

(iii)

f

(

x+ y

2

)

≤
1

y − x

y
∫

x

f(t)dt (x, y ∈ I, x < y).

For a proof and further generalizations see the book of Niculescu and Persson [4] and the
paper [1].

Related to ε-convexity, we have the next (easy to verify)

Fact 2

Assume that f is ε-convex in the following sense

(i)∗ f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y) + ε (x, y ∈ I, t ∈ [0, 1]).

Then

(ii)∗

1

y − x

y
∫

x

f(t)dt ≤
f(x) + f(y)

2
+ ε (x, y ∈ I, x < y);

(iii)∗

f

(

x+ y

2

)

≤
1

y − x

y
∫

x

f(t)dt+ ε (x, y ∈ I, x < y).
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Conversely, if (ii)∗ and (iii)∗ hold then f is 4ε-convex.

Proof. Assume that f is ε-convex. Then, integrating (i)∗ with respect to t over [0, 1],
one obtains (ii)∗. To deduce (iii)∗, observe that (i)∗ implies

f

(

x+ y

2

)

≤
f(tx+ (1 − t)y) + f(ty + (1 − t)x)

2
+ ε (x, y ∈ I, t ∈ [0, 1]).

Integrating this inequality with respect to t over [0, 1], one arrives at (iii)∗.

If (ii)∗ and (iii)∗ hold then

f

(

x+ y

2

)

≤
f(x) + f(y)

2
+ 2ε (x, y ∈ I).

Now, using the result of Ng and Nikodem [3], the 4ε-convexity of f follows. �

A problem presented at the 5th Katowice–Debrecen Winter Seminar in Bȩdlewo was if
any of the inequalities (ii)∗ or (iii)∗ implies the cε-convexity of f for some positive constant c.
By a recent paper of Nikodem, Riedel and Sahoo [5], the answers to both of these questions
are negative, i.e., neither (ii)∗ nor (iii)∗ imply the cε-convexity of f for any c > 0.

Briefly, in [5] the following result was proved:

1. The function fx) := lnx, (x > 0) satisfies (ii)∗ with ε = 1 but it is not c-convex for any
c > 0.

2. For all n ∈ N there exists a function fn which satisfies (iii)∗ with ε = 1 but not c-convex
for any 0 < c < n.

Related to another version of approximate convexity that was studied in [2] we have

Fact 3

Assume that f is (ε, 1)-Jensen-convex in the following sense

(i)∗∗

f

(

x+ y

2

)

≤
f(x) + f(y)

2
+ ε|x− y| (x, y ∈ I, t ∈ [0, 1]).

Then

(ii)∗∗

1

y − x

y
∫

x

f(t)dt ≤
f(x) + f(y)

2
+ ε|x− y| (x, y ∈ I, x < y);

(iii)∗∗

f

(

x + y

2

)

≤
1

y − x

y
∫

x

f(t)dt +
ε

2
|x− y| (x, y ∈ I, x < y).

Conversely, if (ii)∗∗ and (iii)∗∗ hold then f is
(

3
2ε, 1

)

-Jensen-convex.

Proof. Assume that f is (ε, 1)-convex. Then, by the main result of [2],

f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y) + 2εT (t)|x− y| (x, y ∈ I, t ∈ [0, 1]),
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where T : R → R denotes the Takagi-function defined by

T (t) :=

∞
∑

n=0

dist(2nt,Z)

2n
(t ∈ R).

Now, integrating this inequality with respect to t over [0, 1], using that
1
∫

0

T (t)dt = 1
2 , one

obtains (ii)∗∗. To deduce (iii)∗∗, observe that (i)∗∗ implies, for x, y ∈ I, t ∈ [0, 1],

f

(

x + y

2

)

≤
f(tx+ (1 − t)y) + f(ty + (1 − t)x)

2
+ ε |1 − 2t| |x− y|.

Integrating this inequality with respect to t over [0, 1], one gets (iii)∗.

If (ii)∗∗ and (iii)∗∗ hold then

f

(

x+ y

2

)

≤
f(x) + f(y)

2
+

3

2
ε|x− y| (x, y ∈ I),

which means the
(

3
2ε, 1

)

-Jensen-convexity of f . �

Motivated by the above fact, we can raise the following

Problem

Does either (ii)∗∗ or (iii)∗∗ imply the (cε, 1)-convexity of f for some positive constant c?

[1] M. Bessenyei, Zs. Páles, Characterizations of convexity via Hadamard’s inequality, Math. Inequal.
Appl. 9 (2006), 53–62.

[2] A. Házy, Zs. Páles, On approximately midconvex functions, Bull. London Math. Soc. 36 (2004),
339–350.

[3] C. T. Ng, K. Nikodem, On approximately convex functions, Proc. Amer. Math. Soc. 118 (1993),
103–108.

[4] C. P. Niculescu, L.-E. Persson, Convex Functions and Their Applications. A Contemporary Ap-
proach, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 23, Springer, New
York, 2006.

[5] K. Nikodem, T. Riedel, P. Sahoo, The stability problem of the Hermite-Hadamard inequality,
submitted.

Zsolt Páles

5. Remark. Functional equations involving weighted quasi-arithmetic means and their Gauss
composition (presented by Zs. Páles)

Let I ⊂ R be a nonvoid open interval. Let Mi: I
2 → I (i = 1, 2, 3) be weighted quasi-

arithmetic means with the property

M3 = M1 ⊗M2 ,

where ⊗ denote the Gauss composition of M1 and M2. We consider the following two func-
tional equations for the unknown f : I → R:

(1) f(M1(x, y)) + f(M2(x, y)) = f(x) + f(y) (x, y ∈ I),

(2) 2f(M3(x, y)) = f(x) + f(y) (x, y ∈ I).
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It is known, that all solutions of (2) are solutions of (1), too. We give a complete charac-
terization for the means Mi (i = 1, 2, 3) so that arbitrary solution of (1) also satisfy (2).

Zoltán Daróczy

6. Remark.

In 1960 the following system of equalities was solved by Aczél and Go l
↪

ab (see [1], also [2])

H(s, t, x) = H(u, t,H(s, u, x)), (1)

H(s, s, x) = x. (2)

One can observe that equations (1) and (2) themselves do not need any algebraic structures
in the domain of H so we could assume that the function H acts as follows H:S×S×X → X
where S and X are sets.

Moreover, it is known that if (S,+) is a group and F :S×X → X satisfies the translation
equation

F (s+ t, x) = F (t, F (s, x))

with natural initial condition
F (0, x) = x, (3)

then the function H:S × S ×X → X defined by

H(s, t, x) := F (s− t, x)

satisfies the system of (1) and (2).
Nevertheless, condition (3) is common but in some situations is not fulfilled by solution

of the translation equation. It leads to the idea of solving equation (1) without equality (2).
In this direction we have proved the following proposition.

Proposition

Let S,X be sets and let H:S × S × X → X be a solution of equation (1). Therefore there
are functions Φ,Ψ:S ×X → X such that

H(s, t, x) := Ψ(t,Φ(s, x)) for every s, t ∈ S, x ∈ X. (4)

Moreover, if Φ,Ψ:S ×X → X are functions such that for every u ∈ S: Ψ(u, ·)−1 = Φ(u, ·)
on the set Φ(S × X), then the function H:S × S × X → X given by the formula (4) is a
solution of equation (1).

[1] J. Aczél, S. Go l
↪
ab, Funktionalgleichungen der Theorie der Geometrischen Objekte, PWN,

Warszawa, 1960.

[2] Z. Moszner, Les equations et les inégalités liées à l’équation de translation, Opuscula Math. 19

(1999), 19–43.

Grzegorz Guzik

7. Problem.

Is the following conjecture true?

Conjecture

Let the diffeomorphism Ψ: (0,∞) → (0,∞) have no fixed point. If for every increasing self-
diffeomorphism g of the closed interval [0,∞) the function

gΨ(x) := Ψ−1 ( g (Ψ(x))) , x > 0,
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(with value 0 at zero) is again a self-diffeomorphism of [0,∞), then the derivative DΨ of Ψ
is slowly varying at zero.

For making the problem more readable, let us sketch a proof of the inverse claim. For, let
the diffeomorphism Ψ have slowly varying derivative, i.e., let

lim
x→0

DΨ(λ · x)

DΨ(x)
= 1 for all λ > 0.

Then both, Ψ and Ψ−1 are regularly varying with exponent 1 (we are omitting the details).
Moreover for the derivative of gΨ we have

DgΨ(x) =
DΨ(x)

DΨ(Ψ−1 ◦ g ◦ Ψ(x))
·Dg(Ψ(x)).

With the use of Dg(0) > 0, by the regular variability of Ψ−1 we obtain that the ratio of the
arguments of Ψ has a finite and positive limit as follows,

lim
x→0

x

Ψ−1 ◦ g ◦ Ψ(x)
= lim

x→0

Ψ−1 ◦ Ψ(x)

Ψ−1 ◦ g ◦ Ψ(x)
= lim

x→0

Ψ(x)

g ◦ Ψ(x)
= lim

y→0

y

g(y)
= (Dg(0))−1 ∈ (0,∞).

By the slow variability of DΨ and by continuity of Dg, the limit DgΨ(0+) equals 1 ·Dg(0).

By similar arguments from DgΨ(0) = limx→0
gΨ(x)

x
one can get that DgΨ(0) = Dg(0), too.

Thus, DgΨ is continuous at zero, which closes the most important step for the inverse claim.
Joachim Domsta

8. Remark.

The Theorem formulated on p. 159 of the report on the 10th ICFEI (Ann. Acad. Paed.
Cracov. Studia Math., 5 (2006)) is not true. A counterexample: F (x, y) = y, (x, y) ∈ R2,
was communicated to the speaker by Professor Karol Baron.

The correct formulation of the result, obtained jointly with Z. Pow ↪azka (Kraków) is the
following.

Theorem

Assume that I ⊂ R is an open nonempty interval and that (I, F ) is a group with the unit

e. If ψ: R → R, ψ(x + y) ≤ F (ψ(x), ψ(y)), (x, y) ∈ R2, ψ(0) = e, and there is a function
ϕ: R → R, such that ϕ(x + y) = F (ϕ(x), ϕ(y)), (x, y) ∈ R2, and ψ(x) ≤ ϕ(x), x ∈ R, then
ψ = ϕ.

Bogdan Choczewski

9. Remark. Regular variability in functional equations
This remark is related to the paper presented by professor Zsolt Páles (see Abstracts of

Talks). Some of the results use the regular variability almost everywhere for obtaining unique-
ness of the generating function from the mean, dependent additionally on some generating
measure (mean of a mixed type). We want to point at the fact that the regular variability
has been used already in the following (obviously much simpler) problem of restoring f from
the mean defined as follows

Mf (x, y) := f−1

(

xf(x) + yf(y)

x+ y

)

, x, y ∈ I (1)

where f is a continuous and strictly monotonic function defined on an interval I of positive
reals. For a point x0 ∈ I let the auxiliary function

δ0(u) := f(x0 + u) − f(x0) whenever x0 + u ∈ I (2)
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be regularly varying at 0 with non-zero exponent, i.e., let

lim
u→0

δ0(λ · u)

δ0(u)
= λρ for λ > 0, where ρ ∈ (0,∞). (3)

(For measurable functions the definition is equivalent to the notion introduced by J. Karamata
in [5]; for review of the regular variability see [1], [4] or [6], and for the facts suitable for the
functional equations, see [1].) In terms of

µ0(u) := Mf (x0, x0 + u) − x0, w0(u) :=
x0 + u

2x0 + u
, (4)

definition (1) implies the following homogeneous equation

δ0(µ0(u)) = w0(u) · δ0(u) whenever u ∈ I − x0, (5)

where I − x0 := {x− x0 : x ∈ I}. It is shown in [3] that

f(x) = f(x0) + (f(x1) − f(x0)) · lim
n→∞

(

µ0
n(x− x0)

µ0
n(x1 − x0)

)ρ

·
W0;n(x1 − x0)

W0;n(x− x0)

where µ0 is given by the x0-cut of Mf according to (4), and

W0;n(u) :=

n−1
∏

j=0

w0(µ0
j(u)) for u ∈ I − x0. (6)

whenever (x− x0) · (x1 − x0) > 0, x1, x ∈ I.

[1] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Encyclopedia of Mathematics and Its
Applications 27, Cambridge University Press, Cambridge – New York – New Rochelle – Melbourne
– Sydney, 1987.

[2] J. Domsta, Regularly Varying Solutions of Functional Equations in a Single Variable – Applications
to the Regular Iteration, Uniwersytet Gdański, Gdańsk, 2002.

[3] J. Domsta, J. Matkowski, Invariance of the arithmetic mean with respect to special mean-type
mappings, Aequationes Math. 71 (2006), 70 – 85.

[4] W. Feller, An Introduction to Probability Theory and its Applications, vol. 2, John Wiley and
Sons, Inc., New York, 1966.

[5] J. Karamata, Sur un mode de croissance régulière des fonctions, Mathematica (Cluj), 4 (1930),
38–53.

[6] E. Seneta, Regularly varying functions, Lecture Notes in Math. 508, Springer-Verlag, Berlin –
Heidelberg – New York, 1976.

Joachim Domsta

10. Remark. Embedding commuting functions into a regular iteration group

An increasing continuous self-mapping f : (0,∞) → (0,∞) is said to be Szekeresian if

f(x) < x, for all x > 0, possesses the derivative at zero D0f := limx→0
f(x)

x
in (0, 1) and if

the Szekeres principal function

ϕf (x‖y) := lim
n→∞

fn(x)

fn(y)
, x > 0,
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is continuous for some y > 0. If additionally f is homeomorphic onto (0,∞) then ϕf (· ‖y) is
the unique regularly varying at zero solution of the canonical Schröder equation

ϕf (f(x)‖y) = d · ϕf (x‖y), x > 0, where d = D0f

equal 1 at y, for arbitrary positive y (for details, see [1]). The following are considerations
which were suggested to me by prof. J. Matkowski. Let f and g be commuting Szekeresian
homeomorphisms. Then ϕf := ϕf (x‖y), with fixed y, satisfies

d · (ϕf ◦ g) = ϕf ◦ f ◦ g = (ϕf ◦ g) ◦ f,

which means that ϕf ◦ g is again a regularly varying solution of the canonical Schröder
equation for f . By a suitable uniqueness theorem, for some positive constant C

ϕf ◦ g = C · ϕf .

All the facts together show, that ϕf is the Szekeres principal function for g and that C = D0g.

Let us introduce ρ := log D0g
log D0f

.

Corollary

If ϕf is homeomorphic, then there is exactly one regular iteration group containing f and g.
Moreover the iterates are given by the formula:

ft = (ϕf )−1 ◦ (dt · ϕf ), t ∈ (−∞,∞),

and f = f1 and g = fρ.

Conjecture

If ρ /∈ Q, then there is a regular iteration group (ft; t ∈ T ) indexed by the (dense) additive
subgroup T generated by 1 and ρ and such that f = f1 and g = fρ.

[1] J. Domsta, Regularly Varying Solutions of Functional Equations in a Single Variable – Applications
to the Regular Iteration, Uniwersytet Gdański, Gdańsk, 2002.

Joachim Domsta
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